Studies . June 7 - June 18, 2001

- 1. Put photon absorption and resolution vs. energy into USA detector MC. Consistent with data?
- 2. If consistent, tune distorted pulse shape to get agreement.
- 1. Start with ~single energy and no energy resolution:

Probability from Gary L2/L1 = 0.092

10 keV No Resolution Function

14 keV No Resolution Function

6/15/01

Probability from Gary L2/L1 = 0.877

10 keV Yes Resolution Function

10 keV Yes Resolution Function

10 keV Yes Resolution Function

6/15/01

Crab MC with IS absorption, and energy acceptance, smearing

Crab MC with IS absorption, and energy acceptance, smearing Final not digitized Energy Spec for good events Difference of DEnergy Histograms, (before - effer) deedtime processing.

Compare Data and Crab MC

6/15/01

Compare Data and Crab MC

6/15/01

Conclusions:

- MC qualitatively reproduces energy distribution of Crab.
- There are some quantitative disagreements.
 - Lowest energy bins can change in data by ~30%.

USA_2_Y2000_D108_205346_D108_210655.evt.fits

USA_2_Y2000_D293_114848_D293_121348_default.evt.filt

- Highest energy bins show layer2/1 > 1 in data.

MC ready to tune pulse shape.

6/15/01